Sebuah mobil pemadam kebakaran meninggalkan kawasan Kilang Minyak Putri Tujuh Pertamina RU II Dumai seusai memadamkan kebakaran akibat ledakan di area “gas compressor” Kilang Dumai, Riau, Sabtu, 1 April 2023. Manajer Humas Pertamina RU II Dumai Agustiawan menyatakan ledakan dan kebakaran di Kilang Pertamina Refinery Unit II Dumai Provinsi Riau pada Sabtu (1/4) malam sekitar pukul 22.40 WIB yang sudah tertangani tersebut menyebabkan 9 pekerja di ruang operator mengalami luka-luka. ANTARA FOTO/Aswaddy Hamid
TEMPO.CO, Tangerang Selatan – Polisi mengungkap penyebab ledakan di Kilang Minyak Pertamina Refinery Unit II Dumai, Riau. Ledakan terjadi pada Sabtu malam, 1 April 2023, pukul 22.40 WIB dan menyebabkan lima pekerja di ruang operator terluka.
Dalam keterangan awal disebutkan titik ledakan berada di area gas kompresor. Lebih lanjut, Kapolda Riau Inspektur Jenderal Mohammad Iqbal, menyebut ledakan dan kebakaran itu dipicu pelepasan atau kebocoran gas hidrogen (H2).
Iqbal menyebut area pipa Suction Discharge dan kebakaran Unit Hydro Cracker (HCU). “Kebakaran tersebut karena hidrogen yang menghasilkan gelombang udara dan suara ledakan dahsyat yang berdampak di sekitar area,” katanya, Minggu 2 April 2023, dikutip dari Antara.X
Secara terpisah, spesialis material temperatur tinggi di Pusat Riset Teknologi Kekuatan Struktur, Badan Riset dan Inovasi Nasional (BRIN), Ilham Hatta, menerangkan kebocoran gas hidrogen itu bisa terjadi lewat mekanisme yang disebut ‘flash’. Ini adalah cara buang tekanan lewat katup-katup otomatik agar sistem bisa tetap dalam tekanan normal.
“Kemungkinan dalam flash saat itu ada hidrogen ikutan,” katanya saat ditemui di Kompleks Puspiptek, Serpong, Tangerang Selatan, pada Senin 3 April 2023. Dia menambahkan, “Saat itu juga menjelang tengah malam, mungkin tidak ada yang deteksi konsentrasi hidrogen berlebih yang terlepas.”
Menurut Ilham, gas hidrogen digunakan oleh Pertamina sebagai bahan bakar untuk memasak minyak mentah (crude oil). Sumber gas hidrogen itu adalah metana. “Didapat dengan cara meng-crack hidrogen dari karbon,” katanya merujuk kepada ikatan kimia molekul metana, CH4.
Saat ikut terlepas dalam flash, gas hidrogen bercampur dengan oksigen di udara sehingga hanya butuh percikan–diduga didapat dari ledakan–untuk menghasilkan segitiga api alias kebakaran. Pertanyaannya kini, kenapa sampai terjadi kebocoran hidrogen itu.
Kebutuhan investigasi sebab kebocoran gas hidrogen ditekankan Ilham agar tidak terjadi ledakan dan kebakaran berulang. “Yang dikhawatirkan adalah ada kerusakan yang lebih luas, dan sudah seharusnya kalau ada kebakaran ada investigasi sampai ke akar-akarnya,” tuturnya.
Temuan Korosi di Pipa Kilang Minyak Balikpapan
Dalam kesempatan itu Ilham mengungkap pengalaman dia dan timnya menemukan sebab kebocoran di Kilang Minyak Pertamina RU V Balikpapan, Kalimantan Timur, pada tahun lalu. Investigasi yang dilakukan saat itu mendapati adanya korosi atau karat yang menyebabkan penipisan di pipa bagian penukar (exchanger) panas. Dugaannya, karena endapan garam yang dibawa angin malam dari arah laut.
“Posisi kilang kan di pinggir laut. Garam mengendap, terakumulasi, dan seiring berjalannya waktu menyebabkan penipisan pipa,” katanya sambil menambahkan saat itu kebocoran hidrogen tak sampai menyebabkan ledakan, tapi sebatas semburan api.
Mungkinkah penipisan pipa jadi sebab ledakan di Kilang RU II Dumai? Ataukah ada internal stress dalam jaringan pipanya seperti yang juga pernah ditemukannya usai kebakaran Kilang Minyak Cilacap pada 2011 lampau? Ilham menjawab, “Kami tidak tahu karena belum diminta investigasi di Dumai.”
Prediksi Umur Material
Yang jelas, pria berusia 66 tahun yang juga tergabung dalam Perhimpunan Periset Indonesia – Tangerang Selatan ini menambahkan, semua material yang beroperasi pada suhu tinggi memiliki standar umur pakai 100 ribu jam atau 10,8 tahun. Kalau operasional bagus, tentu bisa bikin umur pakai material lebih panjang. Atau sebaliknya.
Yang biasa dikerjakan kelompok riset di mana Ilham dan timnya berada adalah memprediksi umur pakai material-material yang sedang digunakan. Spesialisasi mereka dibutuhkan terutama saat tiba waktunya untuk pemeliharaan berkala di industri seperti kilang, pembangkit listrik juga pabrik pupuk.
Ilham yang juga instruktur tetap di PLN menerangkan sejumlah alat dan metode ujinya, termasuk radiografi dan penelitian terhadap struktur mikro material. “Kami punya alat lengkap dan orang yang kompeten, dan semakin kuat setelah integrasi BRIN,” kata dia.
Bogor – Humas BRIN. “Kami putra putri Indonesia mengaku untuk terus bergerak mendorong hydrogen energy sebagai jawaban terbaik menuju free carbon society untuk tanah air Indonesia.” Begitulah komitmen bebas karbon yang diikrarkan oleh Presiden Indonesia Fuel Cell and Hydrogen Energy (IFHE), Prof. Eniya Listiani Dewi, tepat pada Hari Sumpah Pemuda ke-94 Tahun 2022, di Gedung Innovation Convention Center (ICC), Cibinong, Bogor. Ikrar itu disampaikan dalam gelaran acara Talkshow Hydrogen for Free Carbon Society yang merupakan rangkaian kegiatan Indonesia Research and Innovation (InaRI) Expo 2022, Jum’at (28/10).
Deputi Bidang Kebijakan Pembangunan BRIN, Mego Pinandito menjelaskan BRIN mendukung green energy transition untuk menuju Net Zero Emission tahun 2060, dengan kolaborasi internasional dan melalui berbagai program. Dalam kesempatan tersebut, dia menyampaikan materi mengenai “Policy for Free Carbon Society Development: Research and Innovation”.
“Semoga Net Zero Emission Indonesia dapat tercapai, bahkan sebelum 2060, agar memberikan manfaat yang krusial bagi Indonesia di bidang lingkungan, sosial dan ekonomi,” harap Mego.
Dijelaskannya, semua negara di dunia perlu bersatu dalam melakukan upaya maksimal untuk membangun masyarakat rendah karbon dengan mengurangi emisi global hingga separuh dari tingkat saat ini pada tahun 2050. Masyarakat dan industri diharapkan secara proaktif mengambil tindakan untuk berkontribusi pada terciptanya masyarakat rendah karbon menuju Indonesia Bebas Emisi Karbon di tahun 2060.
Pemateri kedua, Direktur Utama Cascadiant Rahmadi Budiman menyampaikan paparan Fuel Cell and Hydrogen Storage Implementation and Delivery in Remote Area and Microgrids secara daring. Cascadiant merupakan perusahaan yang didirikan sejak tahun 2010 yang pada awalnya banyak berbisnis di back-up power solution untuk komunikasi dengan menggunakan bahan bakar hidrogen.
Berikutnya, Project General Manager di Toyota Daihatsu Engineering & Manufacturing Indra Chandra Setiawan hadir dengan paparan berjudul Hydrogen Movement in Global & Asia Pasific Region. Indra menjelaskan tentang perkembangan hidrogen baik di global, maupun di Asia. Fuel cell dapat diaplikasikan pada banyak hal.
“Fuel cell module dapat digunakan di truk, bus, forklift, kapal laut, bahkan pembangkit listrik. Fuel cell dapat digunakan sesuai dengan kebutuhan,” sebut Indra.
Perwakilan Dewan Energi Nasional (DEN) Suharyati hadir menggantikan Djoko Siswanto dan memaparkan materi dari segi kebijakan. Pada tahun ini, DEN akan melakukan review terhadap Kebijakan Energi Nasional (KEN) yang telah diterbitkan sejak tahun 2019. Hal ini mempertimbangkan pertumbuhan ekonomi dan isu-isu yang berkembang saat ini, seperti komitmen pengurangan emisi dan komitmen Indonesia untuk mencapai NZE di Tahun 2060.
“KEN kemudian diturunkan menjadi Rencana Umum Energi Nasional (RUEN). Di dalam RUEN sendiri, sudah ada program kegiatan untuk pembangunan hidrogen. Namun, karena dipersiapkan pada tahun 2014, hidrogen difokuskan untuk memanfaatkan batubara domestik, bukan dari energi baru terbarukan (EBT),” beber Suharti.
Sebagai narasumber terakhir, Lektor Kepala, Institut Teknologi Bandung Utjok W.R. Siagian menyampaikan materi secara daring dengan paparan Indonesia Energy Transition Pathway Toward NZE. Talkshow dengan materi yang sangat menarik ini menghadirkan narasumber yang mumpuni di bidangnya dan dimoderatori secara apik oleh Hary Devianto, Lektor Kepala dari Institut Teknologi Bandung.
Pada kesempatan ini, juga dilakukan penganugerahan kepada Dyah Roro Esti, Anggota Komisi VII DPR RI, sebagai Duta Hidrogen Indonesia. Dalam speechnya Dyah Roro menegaskan bahwa energi hidrogen bukanlah energi masa depan, melainkan energi masa kini.
Selain itu, BRIN juga melakukan penandatangan kerja sama dengan IFHE. BRIN diwakili oleh Deputi Bidang Kebijakan Pembangunan dan IFHE diwakili oleh Presiden IFHE. Disaksikan oleh Kepala Organisasi Riset Energi dan Manufaktur BRIN Haznan Abimanyu dan Kepala Organisasi Riset Nanoteknologi dan Material Ratno Nuryadi.
MoU ini bertujuan untuk penguatan riset dan inovasi bidang material, nanoteknologi, bahan dan proses energi, serta manufaktur untuk renewable energy, teknologi fuel cell dan hydrogen energy, free carbon technology dan riset lainnya yang terkait dengan green technology.
Prof. Ratno Nuryadi dalam sambutannya menyatakan, dengan MoU ini, diharapkan akan lebih menguatkan aktivitas yang sudah dijalankan selama ini. “Kami menyambut dan mendukung dengan penuh kolaborasi ini, terutama terkait dengan SDM di Organisasi Riset Nanoteknologi dan Material. Dan tentunya, Kami memerlukan support dari seluruh stakeholder. Selamat untuk kita semua. MoU ini semoga membawa banyak manfaat,” katanya
Haznan Abimanyu mengucapkan selamat kepada Prof Eniya Listiani Dewi selaku Presiden IFHE dan bersyukur penandatangan MoU berjalan dengan baik. Haznan mengatakan hidrogen merupakan promising energi dan energi masa kini. Energi hidrogen sudah diinisiasi oleh banyak negara.
Haznan juga berharap dengan nota kesepahaman yang telah ditandatangani, sasaran untuk untuk mewadahi kegiatan riset dan inovasi yang terkait dengan green technology dapat tercapai. Selain itu juga dapat meningkatkan potensi SDM, meningkatkan kerjasama riset yang menggunakan sumber daya dan fasilitas riset serta inovasi baik dari BRIN maupun IFHE. (ark/ed:aj,jml,drs)
Tangerang Selatan, Humas BRIN. Gerald Ensang Timuda, periset Pusat Riset Material Maju – Badan Riset dan Inovasi Nasional (BRIN), pada Selasa (16/7) mempresentasikan risetnya berjudul “Aplikasi Material Metal Oksida Nanostruktur untuk Produksi Hidrogen Ramah Lingkungan”. Topik riset tersebut dipresentasikan pada webinar ORNAMAT seri #7 tahun 2022 di lingkungan Organisasi Riset Nano Teknologi dan Material BRIN
Dalam paparannya, Gerald menyampaikan alasan melakukan riset material nanostruktur untuk produksi hidrogen.Gerald menjelaskan bahwa riset ini merupakan salah satu bagian dari upaya untuk menciptakan Energi Baru dan Terbarukan (EBT). “Penggunaan energi berbasis fosil di Indonesia ketersediaannya semakin menipis dan juga polusi yang dihasilkan, sehingga diperlukan upaya efisiensi dan alternatif sumber energi baru,” ujarnya.
“Kami memilih hidrogen sebagai salah satu solusi bahan bakar, karena kita memiliki teknologi berbasis hidrogen untuk menghasilkan listrik yang kita kenal dengan fuel cell. Teknologi ini hanya menghasilkan produk samping berupa air, uap air dan panas, jadi sangat ramah lingkungan,” tutur Gerald.
Bagaimana Hidrogen Diproduksi?
Hidrogen dapat diperoleh dengan berbagai macam metode. Yang paling umum digunakan disebut Steam Methane Reforming. Prosesnya adalah dengan mereaksikan gas metana dengan uap air (steam) bersuhu tinggi (700 – 1000 oC) pada tekanan sekitar 3-25 bar. Tetapi permasalahan dari metode ini adalah gas metana berasal dari gas alam yang berarti masih termasuk sumber bahan bakar fosil, dan dalam prosesnya menghasilkan gas-gas rumah kaca seperti CO dan CO2 selain gas hidrogen.
Metode popular lain adalah elektrolisis air. Molekul air (H2O) dipecah menjadi gas oksigen (O2) dan gas hidrogen (H2) menggunakan energi listrik. Permasalahan utama dari proses ini adalah energi yang dibutuhkan untuk memecah air menjadi gas hidrogen dan oksigen selalu lebih tinggi dibandingkan proses sebaliknya. Sehingga, tidak masuk akal jika hidrogen hasil elektrolisis air dijadikan sumber energi listrik.
“Oleh karena itu, perlu digunakan sumber energi lain untuk memecah molekul air”, ujar Gerald. Metode yang dikembangkan oleh Gerald dan timnya adalah dengan memanfaatkan energi surya sebagai sumber energinya, yang dikenal dengan sistem Photoelectrochemical Water Splitting.
Permasalahan Intermittency
Konversi energi surya umumnya menjadi listrik menggunakan sel surya (solar cell). Tetapi ada permasalahan intermittency. Yaitu, energi matahari bersinar siang hari, tetapi kebutuhan energi yang sangat tinggi itu terjadi di malam hari. Jadi tidak ada ketidakcocokan di sini.
Ketidakcocokan kebutuhan energi ini membutuhkan adanya teknologi sekunder seperti teknologi baterai untuk menyimpan listrik hasil konversi sel surya. Alternatif lain adalah penyimpanan energi dalam bentuk gas hidrogen. Hidrogen bisa dikonversi kapan saja menjadi listrik kembali menggunakan piranti seperti fuel cell, sehingga bisa mencukupi kebutuhan energi di waktu-waktu ketika pasokan energi matahari tidak ada atau kurang optimal.
Pasokan energi dari matahari cukup melimpah
Penggunaan energi surya untuk produksi hidrogen sangat potensial karena pasokan energi dari matahari sangat berlimpah. Pasokan energi matahari ke permukaan bumi dapat mencapai 10.000 kali konsumsi energi global. Oleh karena itu, secara ideal, jika sumber energi dari matahari ini bisa dikonversi dengan priranti yang memiliki efisiensi 10%, maka perlu menutupi permukaan bumi sebesar 0,1 % saja untuk dapat mencukupi kebutuhan energi global. Dalam skala lokal, menutupi daerah kurang lebih seluas ibu kota baru, cukup untuk memenuhi kebutuhan energi nasional.
Produksi Hidrogen dengan Energi Surya
Gerald dan tim memproduksi hidrogen sendiri dengan bantuan energi surya yaitu menggunakan energi matahari ini sendiri, untuk mengaktifkan salah satu elektroda dari alat elektrolis air. “Dengan elektroda ini yang menyerap energi dari matahari dan memecah hidrogen atau oksigen yang ada di air secara langsung,” menurut Gerald.
Terknologi ini, Gerald dan tim menamakan sistem Photoelectrochemical (PEC) Water Spliting, yang sedang dikembangkan dalam beberapa tahun terakhir.
Prinsip PEC Water Spliting
Prinsip PEC Water Spliting adalah, saat cahaya matahari yang masuk ke sistem maka cahaya matahari akan diserap oleh suatu material aktif (fotoabsorber). Material fotoabsorber di sini adalah material semikonduktor yang memiliki level energi konduksi dan valensi yang bersesuaian dengan level energi reduksi maupun oksidasi air sehingga mampu menghasilkan gas hidrogen dan oksigen.
Setelah energi cahaya diserap oleh material absorber sebagai foto-anoda, elektron yang ada di level valensi dari material tersebut akan tereksitasi menuju level konduksi, dan meninggalkan hole di level valensi. Hole ini akan mengoksidasi air sehingga molekul air terpisah menghasilkan gas oksigen dan ion H+. Elektron tereksitasi di level konduksi akan dikeluarkan ke rangkaian eksternal menuju katoda, dan digunakan untuk mereduksi ion H+ dan menghasilkan gas hidrogen.
Mengapa Perlu Nanostruktur?
Struktur nano sangat dibutuhkan agar bisa diperoleh luas permukaan yang tinggi sehingga semakin banyak lokasi terjadinya reaksi pemecahan air. Oleh karena itu, perlu dipertimbangkan pula sifat listrik material setelah menjadi struktur nano.
Hambatan listrik bisa menjadi lebih tinggi setelah berstruktur nano dibandingkan bulk-nya, misalnya untuk jenis mesoporous nanoparticle. Hal ini mengakibatkan berkurangnya elektron yang tersedia untuk reaksi reduksi air sehingga produksi hidrogen juga menurun.
“Untuk meningkatkan sifat listrik, pengembangan struktur 1D atau 2D seperti nanorod atau nanosheet menjadi pilihan, meskipun dengan trade-off luas permukaan yang semakin kecil,” ujar periset muda ini.
Nanostruktur Metal Oksida di PEC Water Splitting
Beberapa contoh aplikasi nanostruktur untuk beberapa jenis material metal oksida, antara lain:
Zinc oxide atau seng oksida (ZnO)
Pada paper Electrochemistry Communications 13 (2011) 1383-1386, dijelaskan perbedaan antara dua nanostruktur ZnO untuk PEC Water Splitting, yaitu nanotube dan nanosheet. Nanosheet menghasilkan photocurrent yang lebih tinggi dari nanotube. Respon photocurrent adalah respon arus yang dihasilkan ketika foto-anoda semikonduktor disinari cahaya. Ini adalah salah satu cara mendeteksi sifat foto-anoda yang baik.
Paper Nano Energy 20 (2016) 156-167 juga mempelajari perbedaan berbagai nanostruktur ZnO, dan dalam hal ini orientasi kristal dari permukaan material yang terekspos ke air juga dipelajari: nanosheet dengan orientasi (002), nanorod (100), dan nanopiramida (101). Pada penelitian ini juga didapatkan bahwa struktur nanosheet dengan orientasi (002) menghasilkan photocurrent terbesar.
Dari kedua contoh di atas, telah diperlihatkan pentingnya nanostruktur yang tepat untuk aplikasi PEC Water Splitting. Kami juga melakukan penelitian ke arah ini. Dari paper yang sebelumnya mereka membuat nanosheet dengan posisi lembaran (sheet)-nya sejajar dengan permukaan substrat, sekarang kami mencoba membuat nanosheet yang lembarannya tegak lurus terhadap substrat (berdiri). Harapannya, nanosheet dapat ditumbuhkan ke atas (semakin tinggi) sehingga luas permukaannya juga semakin tinggi.
“Hasil penelitian kami ini telah kami publikasikan di AIP Conf.Proc.2382 (2021) 020006. Selain itu kami juga mengembangkan metode baru untuk sintesis serbuk ZnO sehingga menghasilkan struktur unik spiked-nanosheet. Aplikasi serbuk ini sebagai PEC Water Splitting telah kami laporkan di ‘The 6th International Symposium on the Frontier of Applied Physics (ISFAP 2021)’, di mana prosidingnya akan dipublikasikan dalam waktu dekat ini,” urai Gerald.
Titanium dioxide (TiO2)
Material semikonduktor metal oksida lain yang mirip dengan ZnO dari segi level energi dan bandgap adalah TiO2. Untuk aplikasi sebagai foto-anoda sistem PEC Water Splitting, berbagai jenis nanostruktur telah dilaporkan, antara lain nanoparticle, nanotube, nanorod, nanotube dan nanorod bercabang, dsb. (Small (2019) 1903378). Respon photocurrent yang lebih besar diperoleh untuk struktur dengan luas permukaan tinggi seperti nanotube dan nanorod bercabang.
Bismuth Vanadate (BiVO4)
Kedua material yang sudah diterangkan di atas, ZnO dan TiO2, hanya mampu menyerap cahaya ultraviolet (UV) dari sinar matahari. Padahal, cahaya UV hanya bagian kecil dari spektrum cahaya matahari. Spektrum cahaya tampak, yang merupakan porsi terbesar, tidak bisa diserap. Untuk meningkatkan efektivitas penyerapan, perlu dikembangkan material yang mampu menyerap cahaya tampak, seperti Bismuth Vanadate (BiVO4)
Material ini termasuk yang tertinggi efesiensinya di golongan metal oksida untuk aplikasi foto-anoda PEC Water Splitting. Paper Nature Communication 6 (2015) 8769 melaporkan struktur BiVO4 nanoporous nano-coral dan mendapatkan efisiensi yang tertinggi di kelasnya.
Hematit (Fe2O3)
Material metal oksida lain yang memiliki spektrum penyerapan cahaya tampak adalah hematit (Fe2O3). Paper NanoscaleHoriz 1 (2016) 243-267 menjelaskan berbagai nanostruktur hematit untuk aplikasi PEC Water Splitting, seperti nanorod, dendrites, nanocone, cauliflower, dan nanosheet. Salah satu permasalahan hematit adalah mudahnya elektron tereksitasi kembali ke level semula (dikenal dengan rekombinasi). Sehingga, sintesis menjadi struktur nano selain untuk meningkatkan luas permukaan juga untuk meningkatkan sifat transportasi elektronnya. Di antara berbagai nanostruktur di atas, struktur nanocone dan cauliflower termasuk yang tertinggi respon photocurrent-nya.
Struktur hybrid
Selain pengembangan nanostruktur, Gerald dan timnya juga mengembangkan struktur hybrid atau heterostruktur antar metal oksida.
“Hal ini berfungsi untuk melebarkan spektrum cahaya matahari yang bisa diserap oleh material. Material nanostruktur seperti ZnO dan TiO2 memiliki sifat fotoelektrik yang baik, namun hanya mampu menyerap spektrum ultraviolet (UV) dari cahaya matahari. sementara kita ingin penyerapan bisa sampai di visible,” kata Gerald.
“Di sisi lain, Fe2O3 memiliki spektrum penyerapan di cahaya tampak, tetapi sifat transport elektronnya kurang baik sehingga hanya sedikit elektron yang bisa dimanfaatkan untuk mereduksi air. Dengan struktur hybrid diharapkan sifat transportasi elektron meningkat sehingga elektron yang dihasilkan dari penyerapan cahaya tampak bisa lebih banyak tersedia untuk reduksi air,” pungkasnya. (hrd/ ed. adl)