Categories
Nanoteknologi & Material Riset & Inovasi

Pengelolaan Limpasan Air Tambang untuk Penambangan Nikel Ramah Lingkungan

Tangerang Selatan – Humas BRIN. Berdasarkan data Kementerian Energi dan Sumber Daya Mineral, kebutuhan logam nikel semakin meningkat. Hal ini terjadi karena adanya peningkatan permintaan kendaraan bermotor listrik berbasis baterai yang rendah emisi gas karbondioksida. Selain itu, peningkatan kebutuhan nikel juga didorong oleh peningkatan permintaan super alloy (logam dengan ketahanan korosi yang mumpuni).

Sebagai penghasil 30% nikel dunia, peningkatan kebutuhan nikel akan mendorong produksi penambangan nikel di Indonesia. “Namun selain memberikan dampak positif ekonomi, perkembangan produksi pertambangan nikel juga memiliki risiko kerusakan lingkungan dan gangguan kesehatan manusia,” ungkap perekayasa Pusat Riset Teknologi Pertambangan Badan Riset dan Inovasi Nasional (BRIN) Anindita Hardianti,  pada forum pertemuan ilmiah riset dan inovasi ORNAMAT seri 26, Selasa (28/03).

Anindita memaparkan tentang Pengelolaan Limpasan Air Tambang untuk Penambangan Ramah Lingkungan, Studi Kasus: Pertambangan Nikel. Menurutnya, hingga saat ini mayoritas program nikel diproduksi dari bijih nikel yang ditambang dengan metode terbuka.

“Hal ini disebabkan karena daerah pertambangan nikel memiliki curah hujan tinggi yang saat hujan jatuh di atas area penambangan, air hujan tersebut menjadi air limpasan tambang yang tidak hanya membawa padatan tersuspensi atau TSS (Total Suspended Solid), atau yang secara kasat mata disebut dengan lumpur, tetapi juga membawa zat-zat berbahaya yang terkandung dalam bijih nikel, terutama kromium heksavalen. Zat ini bersifat toksik bagi organisme termasuk manusia,” paparnya.

Upaya pengelolaan air limpasan tambang telah dilakukan dengan menambahkan ferro sulfat yang dapat mereduksi kromium heksavalen yang merupakan zat terlarut menjadi Cr(III) yang berbentuk padat. Tetapi, upaya ini belum bisa meningkatkan kualitas air limbah hingga memenuhi baku mutu secara konsisten. Sehingga pada waktu tertentu, zat-zat berbahaya tersebut dapat terlepas ke lingkungan.

Oleh karena itu, dilakukan kajian pengelolaan air limpasan tambang dalam 4 tahapan. Pertama, karakterisasi lokasi untuk mengetahui faktor-faktor pendorong peningkatan kromium heksavalen termasuk faktor alam, maupun aktivitas tambang.

Anindita menjelaskan, tim survei lapangan mengambil data kualitas air dan lingkungan lainnya dari sebelum dan sesudah kegiatan pertambangan, dari hulu hingga hilir. Selain itu, mengambil kualitas air sebelum dan sesudah turunnya hujan. Kemudian tim juga mengambil sampel air di bagian inlet dan outlet fasilitas pengelolaan air limpasan tambang untuk mengevaluasi kinerjanya dan mengidentifikasi faktor penyebab kualitas air di outlet fasilitas eksisting tidak dapat memenuhi baku mutu secara konsisten.

Karakterisasi lokasi menemukan adanya korelasi antara TSS dengan total kromium yang tinggi.  Kemudian total kromium yang tinggi ini, terjadi pada saat hari-hari hujan.

“Hujan meningkatkan debit air yang menimbulkan turbelensi, sehingga Cr(III) yang sebelumnya terendapkan, kembali tersuspensi dan menimbulkan lonjakan konsenstrasi kromium dan TSS. Oleh karena itu, dibutuhkan fasilitas pengolahan air limpasan yang dapat menurunkan konsentrasi kromium dan TSS secara terintegrasi,” jelas sarjana Teknik Lingkungan Institut Teknologi Sepuluh Nopember.

Kedua, berdasarkan hasil karakterisasi, ia dan tim menentukan teknik pengolahan dan mengujinya dalam skala laboratorium. Menggunakan variasi tipe kolam pengendap yaitu kolam bersekat konvensional (bersekat lurus) dan bersekat miring yang disebut lamella gravity settler (LGS).

Menurutnya, kolam pengendapan bersekat konvensional itu tidak dapat menurunkan konsentrasi padatan tersuspensi (TSS) hingga memenuhi baku mutu yang masih di atas 200 mg/L, tanpa bahan kimia. Sedangkan LGS bisa menurunkan TSS  hingga di bawah baku mutu bahkan tanpa bahan kimia.

“LGS dapat mengolah konsentrasi TSS  dengan konsentrasi yang bervariasi. Meski pun demikian untuk menurunkan Cr(VI) yang terlarut dan meningkatkan kecepatan pengendapan diperlukan penambahan ferro sulfat, dan flokulan pada LGS,” ujar master of Professional Engineering (Specialisation: Environmental Engineering) The University of Western Australia.

“Sekat miring LGS dapat meningkatkan kecepatan pengendapan, sehingga luas pengendapan efektif pada LGS lebih besar dibandingkan dengan pengendapan konvensional,” ucapnya.

Ketiga, setelah uji skala laboratorium, berhasil, tim meningkatkan skla pengujian LGS, yaitu pada skala pilot berkapasitas 40 m3. Fasilitas ini dapat mengoperaikan secara kontinu serta pengadukan koagulasi dan flokulasi dengan melakukan secara mekanik.

Lebih lanjut, kolam ekualisasi mengatur debit aliran yang masuk ke dalam LGS. Aplikasi LGS ini sesuai dengan permintaan klien untuk meletakkan di dua lokasi yaitu di hilir area tambang, dan di hilir processing plant (PP) untuk mengolah air limbah. Kualitas air inlet tidak mevariasikan secara langsung atau sesuai dengan kondisi yang sebenarnya.

“Pengolahan air limbah PP membutuhkan waktu tinggal yang lebih lama yaitu selama 60 menit, dibandingkan dengan air limpasan tambang yang hanya selama 48 menit. Hal ini disebabkan rata-rata konsentrasi TSS pada air limbah PP lebih tinggi dari air limpasan tambang. Pengaturan waktu tinggal ini dapat dilakukan dengan mengatur jumlah debit yang masuk,” jelas Kelompok Riset Penambangan Ramah Lingkungan ini.

Keempat, setelah LGS pada uji skala pilot berhasil mengolah air limbah (air limbah PP dan air limpasan tambang) hingga memenuhi baku mutu. LGS kemudian dibangun pada skala penuh (full scale) di area tambang. Fasilitas ini memiliki 4 unit serupa (masing-masing memiliki area koagulasi, flokulasi, dan pengendapan dengan kapasitas 1.000 meter kubik) berkapasitas total 4.000 meter kubik.

Anindita menerangkan, berbeda dengan skala pilot, proses koagulasi dan flokulasi pada skala penuh ini, dilakukan secara hidrolis. “Jadi memanfaatkan energi kejatuhan air secara gravitasi dan tumbukan air dengan sekat atau baffe. Hal ini ditujukan untuk mengurangi kebutuhan energi terutama di area-area tambang yang umumnya terletak di remote area,” tuturnya.

Berdasarkan hasil uji skala penuh, LGS mampu menurunkan konsentrasi TSS dan kromium pada air limbah. Terjadi penurunan pH dan peningkatan Fe dikarenakan adanya penambahan ferro sulfat yang menambah konsentrasi Fe. Selain itu ferro sulfat itu sendiri menghasilkan asam ketika dilarutkan.

“Kualitas air inlet sangat keruh menjadi sangat jernih dan dapat digunakan kembali untuk pengolahan mineral dan membersihkan fasilitas LGS termasuk sekat-sekat miring akibat dari penumpukan lumpur,” pungkasnya. (hrd/ed:adl)

Sumber:

https://www.brin.go.id/news/112128/pengelolaan-limpasan-air-tambang-untuk-penambangan-nikel-ramah-lingkungan

Categories
Nanoteknologi & Material Riset & Inovasi

Pakar Polimer Bahas Tata Kelola Daur Ulang Limbah APD di Indonesia

Tangerang Selatan – Humas BRIN. Alat pelindung diri (APD) merupakan perlengkapan yang berfungsi melindungi pengguna dari infeksi bakteri atau virus. Jenis APD yang dipakai oleh tenaga medis ini tidak hanya berupa pakaian saja, tetapi juga ada pelindung bagian kepala, mata, telinga, dan lainnya. Di dalam penggunaannya, APD bisa bersifat multi use, multi years, sehingga penggunanya tidak hanya sekali, tetapi bisa berulang kali.

Namun, yang menjadi masalah pada APD yakni ada bagian pakaian pelindung ini yang hanya dapat digunakan sekali pakai. Terutama pada masa Covid 19 lalu, banyak APD yang penggunaannya hanya sekali pakai, mengingat masalah toksisitas dan lainnya. Sehingga limbah medis yang berbahan baku polimer ini turut berdampak pada lingkungan.

Guna membahas pengelolaan limbah medis tersebut, Pusat Riset Teknologi Polimer – Badan Riset dan Inovasi Nasional (BRIN) bekerja sama dengan Australia Global Alumni menggelar Webinar Series, ‘Teknologi Pengolahan Limbah Medis’, Rabu (15/03).

Kepala Pusat Riset Kimia Maju, Yenny Meliana mengatakan, melalui webinar ini, para periset menyampaikan hasil penelitian tentang teknologi pengolahan limbah medis dan juga metode-metode lain, yang mungkin dapat melakukannya sebagai alternatif.

“Saya harapkan para peserta baik peneliti, rumah sakit, akademisi, mahasiswa, pelaku industri, dan masyarakat umum dapat berinteraksi dengan para narasumber. Kemudian membuahkan hasil yang berpotensi memunculkan ide-ide baru untuk penelitian lebih lanjut khususnya teknologi limbah medis yang berkelanjutan berbasis daur ulang,” ujar Yenny pada sambutannya mewakili Kepala Organisasi Riset Nanoteknologi dan Material (ORNM).

Sebagai pembicara pada webinar tersebut, Chalid dari Departemen Teknik Metalurgi dan Material Universitas Indonesia mengatakan APD itu tidak hanya berbasis polipropilena, tetapi juga ada dari polietilen tereftalat (PET) dan seterusnya. Hanya mungkin di Indonesia, lebih banyak bahan baku APD yang digunakan adalah polipropilena (PP).

Di dalam pengembangan teknologi eko-plastik, ia mengungkapkan bahwa harus mempertimbangkan aspek ekonomi, sosial, dan budaya. “Yang tidak kalah penting adalah teknologi di dalam dunia polimer atau plastik demikian pesat, sehingga dapat membangun kesadaran stakeholder maupun semua pihak terhadap tata kelola APD,” ujarnya.

Menurutnya, polipropilena merupakan salah satu jenis polimer. Tetapi banyak orang memahami tentang plastik dalam perspektif yang kurang tepat.

“Plastik dalam konteks bagian dari polimer, merupakan suatu produk berkelanjutan (sustainable) yang terus menerus dapat dimanfaatkan, dan jika mengelola dengan baik maka aspek lingkungannya tidak menjadi sebuah isu yang hingar bingar pada saat ini,” kata Chalid.

Chalid berpendapat, mendesain sebuah produk adalah mendesain bahan baku, sementara polimer itu agak unik karena ada kandungan aditif, baik yang berorientasi fungsional maupun estetika.

Selain itu, polimer harus memenuhi kaedah dari spesifikasi produk, baik sifatnya primer/ fungsionalnya maupun sekunder/estetikanya, kemudian harus mampu diproses. “Setelah jadi, oleh industri hilir dijadikan sebagai produk siap pakai, semisal masker, pakaian pelindung, dan setelah orang pakai, maka akan menjadi sampah/limbah,” ungkapnya.

“Dari situ ada industri yang mengelola dari sampah/limbah tadi yaitu industri daur ulang, untuk diolah menjadi bahan jadi atau juga bisa diolah lagi menjadi monomernya, atau bisa diolah menjadi polimernya, dengan pemisahan separasi dengan additives-nya dengan teknik kristalisasi,” sambungnya.

“Ada juga pendekatan-pendekatan lain semisal dari APD yang telah disterilisasi kemudian diproses, di-convert dan seterusnya, diolah lagi menjadi bijih plastik, yang kemudian bijih plastik bisa diolah menjadi berbagai jenis produk,” cakapnya.

Lebih lanjut, Chalid mengatakan, seorang teknokrat atau pun seorang yang bergelut dalam dunia ilmiah, polimer tidak hanya berbasis bisa menjadi produk ini produk itu, tetapi juga harus memperhatikan aspek-aspek makro yang lainnya, seperti aspek ekonomi, aspek kesehatan, dan aspek-aspek yang lain.

“Polimer/plastik merupakan sebuah siklus yang harus mendesain menjadi sebuah produk yang sama atau menjadi produk turunan lain. Kemudian, di situlah yang harus membangun dalam masyarakat kita, membangun cara pandang dari dunia ekonomi ke sirkular ekonomi dalam satu sistem yang harus sustainable,” terang lulusan strata-1 Kimia Universitas Indonesia.

“Kalau kita melihat sistem sirkular saja, tanpa bersama aspek ekonomi, maka stakeholder yang terlibat itu kurang tersimulasi untuk melakukannya, karena di situ tidak ada kaitan untuk ekonomi. Kalau kita mampu untuk menjadikan sirkular yang berbasis ekonomi, maka ini merupakan suatu daya dorong untuk stabilitas pengelolaan sampah ke depan,” tambahnya.

Chalid menjelaskan bahwa sampah plastik bisa didaur ulang. Dari jenis plastik diantaranya rubber (karet), termoplastik, dan termoset. “Letak perbedaan dari jenis rubber, thermoplast, dan thermoset adalah dari sisi konfigurasi rantai molekulnya,” sebutnya.

Dirinya menjabarkan termoplastik tidak memiliki punggung silang satu sama lain. “Maka pada saat ia dipanaskan, rantai molekulnya mampu bergerak bebas, kemudian memberikan ruang kosong sehingga rantai molekul mampu bergerak bebas, jadi dia mampu dibentuk ulang,” ulas Chalid.

Namun untuk model rubber dan termoset memiliki punggung silang. “Sehingga jenis rubber maupun thermoset dapat didaur ulang, namun tidak mampu dibentuk ulang,” tambahnya.

“Jadi tidak atau semua sampah plastik seperti karet, thermoset, thermoplast akan mampu didaur ulang. Tergantung jenis daur ulangnya apa,” jelas lulusan lulusan strata-2 dan strata-3 Polymer Polymer Engineering serta Plymer Product Technology Netherlands.

Menurutnya, tipe daur ulang terbagi empat jenis, yaitu Pendaur-ulangan Primer, Pendaur-ulangan Sekunder, Pendaur-ulangan Tersier, dan Recovery Energi/Pendaur-ulangan Kuartener.

“Jadi tidak ada kategori kita akan menyerah atau bermusuhan dengan plastik. Pada dasarnya bukan masalah pada plastik, tetapi tata kelolanya. Bagaimana tata kelola itu bisa sampai kepada masyarakat. Maka edukasi maupun program uji menjadi sangat penting, untuk menunjang bagaimana masyarakat Indonesia dalam mendaur ulang,” tuturnya.

Chalid menyampaikan, tidak akan bisa berdiri sendiri bagi seorang teknokrat atau pun  seorang bagian dari iptek, kalau tidak memperhatikan aspek makronya. Maka, di Eropa bahkan di Indonesia melalui KLHK, telah mengembangkan Extended Producer Responsibility (EPR).

“EPR ini bertujuan agar produsen ada tanggung jawab baru, bagaimana produk yang telah menyebar di pasar itu bisa di-withdraw kembali dalam sebuah sistem produk, sehingga tumpukan sampah menjadi lebih menurun,” terangnya.

Chalid menyatakan adanya produk polimer/plastik adalah anugerah Tuhan, yang bukan sesuatu hal yang buruk dan sia-sia. Oleh karena itu, perlu kolaborasi dari para stakeholder untuk mengelolanya dengan baik.

“Selama ini dengan masyarakat kami sudah membangun awareness dengan berbagai kajian teknologi. Tetapi masih perlu sinergitas dan harmoni kebijakan yang berkaitan dengan multi-stakeholder,” ungkap Chalid.

“Selain itu, kita harus memahami peta supply berbasis data base, kira-kira seperti apa, baru kita membangun ekosistemnya yang bersama dengan inovasi, serta membangun sustainability,” pungkas Associate Professor Departemen Metalurgi dan Material UI.(hrd/ed:adl)

Categories
Nanoteknologi & Material Riset & Inovasi

Antisipasi limbah baterai kendaraan listrik melalui ekonomi sirkular

Oleh Adimas Raditya Fahky P  Jumat, 24 Februari 2023 19:21 WIB

Antisipasi limbah baterai kendaraan listrik melalui ekonomi sirkular

Pengunjung mengendarai sepeda motor listrik pada pameran Indonesia Internasional Motor Show (IIMS) di JIExpo Kemayoran, Jakarta, Senin (20/2/2023). Menteri Energi dan Sumber Daya Mineral (ESDM) Arifin Tasrif memastikan bahwa insentif untuk kendaraan listrik akan mulai diberikan oleh pemerintah pada Maret mendatang dengan besaran insentif yang diberikan bagi sepeda motor sebesar Rp7 juta per unit. ANTARA FOTO/M Risyal Hidayat/aww.

60 persen komponen mobil listrik kuncinya ada di baterai.

Jakarta (ANTARA) – Pemerintah Indonesia tengah gencar mendorong pemanfaatan kendaraan listrik secara luas, baik dari sisi pemerintah maupun masyarakat umum.

Selain menjadi moda transportasi yang ramah lingkungan, kendaraan listrik berbasis baterai (electric vehicle) juga diyakini akan menjadikan Indonesia sebagai pemain besar komponen utama kendaraan tersebut.

Presiden Joko Widodo menyebutkan 60 persen komponen mobil listrik kuncinya ada di baterai. Menurut dia, Indonesia memiliki cadangan material untuk membuat baterai dengan ketersediaan melimpah.

Sebagai bukti keseriusan pemerintah, sejumlah regulasi dan aturan turunannya pun telah diterbitkan, di antaranya Peraturan Presiden (Perpres) No. 55 Tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Jalan.

Kemudian, Instruksi Presiden (Inpres) Nomor 7 Tahun 2022 Tentang Penggunaan Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) Sebagai Kendaraan Dinas Operasional dan/atau Kendaraan Perorangan Dinas Instansi Instansi Pemerintah Pusat dan Pemerintah Daerah.

Demikian juga aturan turunannya yang diterbitkan oleh Kementerian Perhubungan. Paling sedikit ada enam Peraturan Menteri Perhubungan yang mengatur tentang implementasi kendaraan listrik di Indonesia.

Secara umum, Permenhub ini mengatur tentang uji tipe, pedoman konversi, serta pedoman teknis terkait Penerimaan Negara Bukan Pajak (PNBP).

Berdasarkan data Direktorat Jenderal Perhubungan Darat Kemenhub, kebutuhan kendaraan operasional Pemerintah Pusat, Pemerintah Daerah, TNI, Polri dari Internal Combustion Engine (ICE) ke Battery Electric Vehicle (BEV) hingga tahun 2030 mencapai sebanyak 398.530 kendaraan roda dua dan 132.983 kendaraan roda empat.

Sementara itu, jumlah total Sertifikat Registrasi Uji Tipe (SRUT) kendaraan listrik yang telah diterbitkan hingga Januari 2023 mencapai 48.162 unit.

Seiring dengan perkembangan teknologi ke depan, dapat dibayangkan bagaimana banyaknya populasi kendaraan listrik, atau bahkan kendaraan otonom akan memenuhi jalan-jalan di Indonesia dalam beberapa tahun ke depan.

Daur ulang limbah

Meski banyak pihak sepakat bahwa kendaraan listrik jauh lebih ramah lingkungan dibanding mobil berbahan bakar minyak, potensi bahaya dari kendaraan listrik tetap ada.

Limbah dari komponen utamanya, yakni baterai dapat menjadi penyebab pencemaran lingkungan yang serius apabila tidak dikelola dengan baik.

Riset dan studi yang dilakukan oleh Badan Riset dan Inovasi Nasional (BRIN) menemukan bahwa potensi limbah yang perlu diwaspadai adalah baterai bekas pakai, limbah dari proses produksi baterai, serta limbah dari proses daur ulang baterai yang mengandung logam berat dan bahan kimia berbahaya.

Baterai kendaraan listrik umumnya menggunakan baterai lithium ion (LIB), yang terdiri atas katoda, anoda, elektrolit, separator, dan berbagai komponen lainnya.

Beberapa bahan yang digunakan dalam LIB, seperti logam berat dan elektrolit, dapat menimbulkan ancaman bagi ekosistem dan kesehatan manusia.

Jika LIB bekas dibuang begitu saja dan ditimbun dalam jumlah yang besar, ini dapat menyebabkan infiltrasi logam berat beracun ke dalam air bawah tanah, yang mengakibatkan pencemaran lingkungan yang serius.

Demikian pula, jika LIB bekas dibakar sebagai limbah padat, hal tersebut akan menghasilkan sejumlah besar gas beracun, seperti gas hidrogen fluorida (HF) yang berasal dari elektrolit di dalam LIB, yang dapat mencemari atmosfer.

Oleh karena itu, penanganan limbah dari baterai bekas ini sangat dibutuhkan.

Kepala Pusat Riset Teknologi Transportasi, Organisasi Riset Energi dan Manufaktur (OREM) BRIN Dr. Aam Muharam menyebut bahwa sudah banyak studi kajian tentang kemungkinan baterai bekas pakai digunakan kembali melalui proses daur ulang (recycle).

Limbah baterai biasanya di-grading atau disortir terlebih dahulu, untuk mengetahui kapasitas/usia baterai relatif terhadap end-of-cycle-nya.

Jika kapasitas baterai di antara 50-80 persen, baterai bekas tersebut bisa digunakan kembali (reuse) sebagai second life battery.

Second life battery merupakan baterai yang digunakan kembali untuk aplikasi berbeda, seperti untuk aplikasi energy storage atau stationary use.

Apabila baterai sudah mencapai kapasitas di bawah 50 persen, baterai bisa didaur ulang untuk mendapatkan material berharga dari baterai bekas untuk menghasilkan baterai baru.

Daur ulang ulang dapat juga melibatkan penggunaan baterai bekas sebagai bahan baku untuk membuat produk baru yang berbeda dari baterai, seperti pigmen keramik atau logam paduan.

“Baterai bekas hasil daur ulang memerlukan uji atau test durability ulang seberapa jauh dapat dioperasikan kembali. Harus ada regulasi atau standar yg mengatur terkait hal ini,” kata Aam.

Studi terkait daur ulang limbah baterai di BRIN dilakukan oleh periset yang tergabung dalam Kelompok Riset Material Berkelanjutan dan Daur Ulang (Sustainable Material & Recycling Group).

Metode yang paling banyak digunakan dalam proses daur ulang baterai adalah metode pirometalurgi dan hidrometalurgi. Masing-masing metode ini memiliki keuntungan dan tantangannya masing-masing.

Untuk pirometalurgi, prosesnya relatif lebih sederhana karena hanya seperti peleburan logam pada umumnya. Namun demikian, energi yang dibutuhkan sangat besar karena membutuhkan temperatur yang tinggi pada prosesnya.

Ditambah, kemurnian logam-logam berharga di akhir proses pirometalurgi cenderung kurang baik dan perlu dilakukan pemurnian lagi dengan proses lanjutan.

Sementara itu, metode hidrometalurgi memiliki rangkaian proses yang lebih kompleks dan panjang. Akan tetapi, logam berharga yang ingin dipulihkan dapat diambil kembali dengan efisiensi ekstraksi yang sangat tinggi.

Salah satu periset Kelompok Riset Material Berkelanjutan dan Daur Ulang, Dr. Sri Rahayu menyampaikan, baik proses pirometalurgi maupun hidrometalurgi, memerlukan pretreatment atau perlakuan awal, seperti pengosongan daya baterai (discharging), penyortiran baterai bekas berdasarkan jenisnya, penghancuran baterai bekas, dan sebagainya.

Langkah ini dilakukan sebelum masuk ke proses daur ulang utama agar nilai efisiensi ekstraksi logam dapat ditingkatkan dan energi yang dibutuhkan untuk proses daur ulang dapat diminimalisasi.

Ekonomi sirkular

Sejalan dengan hal itu, Kementerian Lingkungan Hidup dan Kehutanan (KLHK) mendorong seluruh pemangku kepentingan untuk mengelola limbah baterai kendaraan listrik melalui pendekatan ekonomi sirkular.

Diklaim sebagai model baru dari konsep reduce, reuse, dan recycle, ekonomi sirkular memaksimalkan kegunaan dan nilai tambah dari suatu bahan mentah, komponen, dan produk sehingga mampu mengurangi jumlah bahan sisa yang tidak digunakan dan dibuang ke tempat pembuangan akhir.

Pendekatan ekonomi sirkular juga meliputi perencanaan desain bahan baku, desain produk, serta proses produksi sehingga memiliki siklus penggunaan yang lebih panjang.

“Prosesnya mulai dari pengumpulan, penghancuran, pengolahan secara kimia dengan teknologi yang ramah lingkungan,” kata Direktur Jenderal Pengelolaan Sampah Limbah dan Bahan Beracun Berbahaya (PSLB3) KLHK, Rosa Vivien Ratnawati.

Daur ulang baterai kendaraan bermotor listrik sebagai bahan baku yang berkelanjutan, dianggap lebih ramah lingkungan karena meminimalisir penggunaan bahan baku baru.

Selain itu, juga memberikan manfaat ekonomi karena dapat menekan biaya produksi komponen utama dari kendaraan listrik.

Rosa menyampaikan pemerintah melalui KLHK mengimbau pabrikan maupun bengkel kendaraan agar memiliki fasilitas pengumpulan baterai bekas, untuk selanjutnya diserahkan kepada pemanfaat limbah aki kendaraan listrik.

Ia juga berharap bahan baku baterai tersebut tidak diekspor ke luar negeri, namun diolah oleh industri pembuatan baterai di dalam negeri sebagai pemasok baterai kendaraaan di seluruh dunia.

“Mendorong investor untuk melakukan proses recycle di Indonesia dengan menggunakan teknologi yang ramah lingkungan,” ujarnya.

Dengan demikian, sejak proses di hulu hingga hilir, bangsa Indonesia mendapatkan manfaat terbesar dari kekayaan sumber daya alam itu.

Sumber : https://www.antaranews.com/berita/3412893/antisipasi-limbah-baterai-kendaraan-listrik-melalui-ekonomi-sirkular

Categories
Uncategorized

Meriset Pengolahan Limbah dari Agroindustri, Amanda Sukses Raih Japan Award

Jakarta – Humas BRIN. Riset dengan judul The Value of Agricultural Waste: Cellulose as a Building Block for Materials, mengantarkan Athanasia Amanda Septevani meraih The 2022 (The 16th) Japan International Award for Young Agricultural Researchers (Japan Award) di Tokyo Jepang, pada Selasa (22/11).

Hasil penelitiannya ini merupakan pengolahan limbah dari agroindustri, khususnya perkebunan kelapa sawit, untuk diolah menjadi material berbasis selulosa. Material ini memiliki sifat baru, dan bernilai tinggi, serta dapat diaplikasikan ke berbagai bidang, seperti lingkungan, kesehatan, kemasan, elektronik, dan energi.

Wanita yang akrab dipanggil Amanda ini, bersama penerima penghargaan lainnya dari Madagaskar dan Meksiko berkesempatan mempresentasikan hasil risetnya. “Hal ini menjadi kebahagiaan tersendiri, melalui apreasiasi internasional sebagai hasil kerja keras kami. Saya bersyukur, dapat mengharumkan nama Indonesia dalam perkembangan iptek, pada skala internasional,” ujar peneliti yang menyelesaikan pendidikan doktoralnya di The University of Queensland, Australia.

Melalui presentasinya, peneliti yang awalnya ingin menjadi dokter ini, berkesempatan menunjukkan hasil riset yang sedang dikembangkan oleh BRIN. Kontribusinya dalam menghadapi tantangan pengolahan limbah agroindustri di Indonesia, dan solusi alternatif untuk negara lain. Sekaligus membuka peluang kerja sama dengan berbagai pihak, bersama-sama memberikan solusi inovatif melalui riset.

Wanita yang bersuami peneliti juga ini mengungkapkan harapannya, agar dapat menjalin kerja sama riset lebih lanjut dengan pemerintah Jepang. Khususnya Ministry of Agriculture, Forestry and Fisheries (MAFF) dan Japan International Research Center for Agricultural Sciences (JIRCAS). “Semoga dengan penghargaan ini, mampu memberikan manfaat nyata. Memberikan dampak langsung, melalui kontribusi perkembangan iptek di bidang pertanian, kehutanan, khususnya dalam pengelolaan, dan teknologi limbah,” ungkapnya.

Menurutnya, riset material ini sangat penting dikembangkan secara berkesinambungan, untuk mengatasi permasalahan lingkungan. Limbah padat biomassa jumlahnya banyak, namun masih belum dimanfaatkan secara optimal. “Pemanfaatan limbah agroindustri menjadi material maju (waste for materials), tidak hanya dapat mengatasi masalah pencemaran limbah. Selain itu, dapat memberikan nilai baru dan manfaat, menjadi produk inovatif yang bernilai tinggi. Pada akhirnya, bisa meningkatkan produktivitas indutri agro secara menyeluruh, menuju ekonomi sirkular,” ulas Amanda.

Sejak 2017 setelah studi doktor hingga sekarang, dirinya bersama tim telah melakukan riset ini secara berkesinambungan dan konsisten. “Berbagai pendanaan, telah berhasil kami dapatkan. Baik dalam maupun luar negeri, dan dari berbagai sektor, seperti lembaga pemerintah, universitas, serta industri. Salah satu industri yang terlibat aktif dengan kami, adalah PT Mandiri Palmera Agrindo, yaitu industri kelapa sawit. Perusahaan yang aktif bersama kami, dalam mengimplementasikan teknologi yang kami kembangkan, dalam mengolah limbah perkebunan kelapa sawit mereka di Sulawesi,” jelasnya.

Sebagai informasi, Japan Award diselenggarakan tiap tahun oleh MAFF dan JIRCAS. Bertujuan untuk memotivasi para peneliti muda, dalam mengembangkan penelitian di bidang pertanian, kehutanan, dan perikanan, serta industri terkait di negara-negara berkembang. (mfn/ ed:adl, ns)

Sumber : https://brin.go.id/news/110902/meriset-pengolahan-limbah-dari-agroindustri-amanda-sukses-raih-japan-award